THE CHINESE UNIVERSITY OF HONG KONG MATH3270B MIDTERM SOLUTION Zhendong CHEN¹

Question 1:

1. It's a separable equation. We deduce that $(3y^2 - 6)y' = 3t^2$, integral on both sides and use the initial data, we deduce the solution is

$$y^3 - 6y = t - 1$$

2. By the hint, we want to find an integrating factor having the form u = u(xy). From the pro 5 in homework1, we can choose $u = e^{\int R}$, where $R = \frac{N_x - M_y}{xM - yN}$, which only depends on xy. In this equation, we find that $N_x = 1 + 4xy$, $M_y = 3 + 4xy$, and then $R = \frac{N_x - M_y}{xM - yN} = -\frac{1}{xy}$ (only depends on xy). Hence, $u = \frac{1}{xy}$. We multiply u on the both sides and get an exact equation $(\frac{3}{x} + 2y)dx + (\frac{1}{y} + 2x)dy = 0$. Therefore, using the initial data, the solution of that O.D.E is

$$\ln|y| + 2xy + 3\ln|x| = 2.$$

3. The characteristic equation of the homogeneous equation is $4r^2 - 4r + 1 = (2r - 1)^2 = 0$. Hence, the general solution to the homogeneous equation is $y = (c_1 + c_2 t)e^{t/2}$. Since the R.H.S of inhomogeneous equation is $8e^{t/2}$, we assume the particular solution having the form $y^* = At^2e^{t/2}$. Then, $(y^*)' = (\frac{At^2}{2} + 2At)e^{t/2}$, $(y^*)'' = (\frac{At^2}{4} + 2At + 2A)e^{t/2}$, we substitute these to the equation and deduce that A = 1. Hence, the solution to the O.D.E is

$$y = (c_1 + c_2 t)e^{t/2} + t^2 e^{t/2}.$$

Question 2:

1. We consider the general case. Suppose the equation $p_2y'' + p_1y' + p_0y = 0$ has a solution φ_1 , we assume another linearly independent solution is $y = v(t)\varphi_1$ and calculate each derivative of y:

$$y' = v' \varphi_1 + \varphi'_1 v, y'' = v'' \varphi_1 + 2v' \varphi'_1 + v \varphi''_1.$$
(1)

¹In the marking of midterm, we will give 50%-80% marks if your result is wrong but the process is right.

We substitute above to the general equation, using the fact that φ_1 is a solution, and we will get *v* satisfies

$$p_2\varphi_1 v^{''} + (2p_2\varphi_1' + p_1\varphi_1)v^{'} = 0.$$
⁽²⁾

In this problem, $\varphi_1 = e^t$, $p_2 = \sin t$, $p_1 = -(\sin t + \cos t)$, we substitute these to (2) and get that *v* satisfies

$$\sin tv'' + (\sin t - \cos t)v' = 0.$$
(3)

Let w = v' and we deduce that $w = \frac{\sin t}{e^t}$, hence, $v(t) = -e^{-t}\frac{\sin t + \cos t}{2}$. Now we deduce another solution is $y_2 = -\frac{\sin t + \cos t}{2}$, so the general solution to the O.D.E is $y = c_1e^t + c_2\frac{\sin t + \cos t}{2}$.

2. We also consider the general case. Suppose the equation $p_3y^{(3)} + p_2y'' + p_1y' + p_0y = 0$ has a solution φ_1 , we assume another linearly independent solution is $y = v(t)\varphi_1$ and calculate each derivative of y:

$$y' = v' \varphi_{1} + \varphi'_{1} v,$$

$$y'' = v'' \varphi_{1} + 2v' \varphi'_{1} + v \varphi''_{1},$$

$$y^{(3)} = v''' \varphi_{1} + 3v'' \varphi'_{1} + 3v' \varphi''_{1} + v \varphi'''_{1}.$$
(4)

We substitute above to the general equation, using the fact that φ_1 is a solution, and we will get *v* satisfies

$$p_{3}\varphi_{1}v^{'''} + (3p_{3}\varphi_{1}^{'} + p_{2}\varphi_{1})v^{''} + (3p_{3}\varphi_{1}^{''} + 2p_{2}\varphi_{1}^{'} + p_{1}\varphi_{1})v^{'} = 0.$$
(5)

In this problem, $p_3 = t^2 - 2t + 2$, $p_2 = -t^2$, $p_1 = 2t$ and we choose $\varphi_1 = e^t$. Similarly, we get that *v* satisfies

$$(t^{2} - 2t + 2)v^{'''} + (2t^{2} - 6t + 6)v^{''} + (t^{2} - 4t + 6)v^{'} = 0.$$
 (6)

By far we can't solve this equation, but since $\varphi_2 = t$ is solution to the O.D.E, which means $v_1 = te^{-t}$ is a particular solution to (6). Hence, we use the reduction of order again. Let w = v' and assume $w = uv'_1$ is another solution to the following equation:

$$(t^{2} - 2t + 2)w'' + (2t^{2} - 6t + 6)w' + (t^{2} - 4t + 6)w = 0.$$
 (7)

Use the formula in 3.1, we deduce that *u* satisfies:

$$t(t^2 - 2t + 2)u'' = 0.$$
 (8)

Then, $u = C_1 + C_2 t$, which means $v = C_1 t e^{-t} + C_2 (t^2 + t - 1) e^{-t}$. Hence, another linearly

independent solution to the O.D.E is $\varphi_3 = t^2$, which means the general solution is $y = c_1t + c_2t^2 + c_3e^t$.

REMARK: In this problem, we can also choose $\varphi_1 = t$, this leads to the equation of v changing to

$$t(t^{2} - 2t + 2)v^{'''} + (-t^{3} + 3t^{2} - 6t + 6)v^{''} = 0.$$
 (9)

Actually, (9) is a first order separable equation, but solving this equation is not easy. We let w = v'' and use partial fraction to find that $w = e^t \frac{(t-1)^2 + 1}{t^3}$, then integral twice to deduce the same result.(The calculation is not easy and you can have a try by yourself.)

Question 3:

1. For this question, we add the condition that **THE WRONSKIAN OF** $\varphi_1, \varphi_2...\varphi_n$ **IS NONZERO**. We consider the following system of linear equations:

$$\begin{cases} \varphi_{1}^{(n-1)}p_{n-1}(t) + \dots + \varphi_{1}^{'}p_{1}(t) + \varphi_{1}p_{0}(t) = -\varphi_{1}^{(n)}(t) \\ \varphi_{2}^{(n-1)}p_{n-1}(t) + \dots + \varphi_{2}^{'}p_{1}(t) + \varphi_{2}p_{0}(t) = -\varphi_{2}^{(n)}(t) \\ \dots \\ \varphi_{n}^{(n-1)}p_{n-1}(t) + \dots + \varphi_{n}^{'}p_{1}(t) + \varphi_{n}p_{0}(t) = -\varphi_{n}^{(n)}(t) \end{cases}$$
(10)

We write the (10) in the vector form: Ap = b, where $A = \begin{pmatrix} \varphi_1 & \varphi'_1 & \cdots & \varphi_1^{(n-1)} \\ \varphi_2 & \varphi'_2 & \cdots & \varphi_2^{(n-1)} \\ \cdots & & & \\ \varphi_n & \varphi'_n & \cdots & \varphi_n^{(n-1)} \end{pmatrix}$,

 $p = (p_0, p_1, ..., p_{n-1})^T$, $b = (-\varphi_1^{(n)}, -\varphi_2^{(n)}, ..., -\varphi_n^{(n)})^T$. Now since $A = W(\varphi_1, \varphi_2, ..., \varphi_n)^T$, which implies $det(A) = det(W) \neq 0$. Hence, the system (10) is solvable, we can apply the Cramer's rule to solve these p_i . The Cramer's rule tells us $p_i = \frac{det(W_i)}{det(W)}$, where W_i is the matrix formed by replacing the i-th column of A by the column vector b. The remaining thing is that to show these coefficients are continuous. Since each φ_i is n-times continuous differentiable functions, and the determinant of n^2 elements is a polynomial of these elements, we deduce that W_i and W are continuous functions, which implies these p_i are continuous.

2. From 3.1, we have the formula $p_i = \frac{det(W_i)}{det(W)}$. In this question, we have:

$$W(e^{t}, \sin t) = \begin{vmatrix} e^{t} & \sin t \\ e^{t} & \cos t \end{vmatrix} = e^{t}(\cos t - \sin t),$$

$$W_{0} = \begin{vmatrix} e^{t} & \cos t \\ -e^{t} & \sin t \end{vmatrix} = e^{t}(\sin t + \cos t),$$

$$W_{1} = \begin{vmatrix} e^{t} & \sin t \\ -e^{t} & \sin t \end{vmatrix} = 2e^{t} \sin t.$$
(11)

Hence we deduce that $p_0 = -\frac{\sin t + \cos t}{\cos t - \sin t}$, $p_1 = \frac{2 \sin t}{\cos t - \sin t}$, the equation is $y'' + p_1 y' + p_0 y = 0$.

REMARK: In this problem, note that p_{n-1} can also be solved by Abel's formula.

Question 4:

1. Since:

$$|\lambda I - A| = \begin{vmatrix} \lambda & 3 & -1 & -2 \\ 2 & \lambda - 1 & 1 & -2 \\ 2 & -1 & \lambda + 1 & -2 \\ 2 & 3 & -1 & \lambda - 4 \end{vmatrix} = \begin{vmatrix} \lambda & 3 & -1 & -2 \\ 2 & \lambda - 1 & 1 & -2 \\ 0 & 0 & \lambda & 0 \\ 0 & 2 - \lambda & -2 & \lambda - 2 \end{vmatrix} = \lambda \begin{vmatrix} \lambda & 2 & -2 \\ 2 & \lambda & -2 \\ 0 & 2 - \lambda & \lambda - 2 \end{vmatrix}$$
$$= \lambda (\lambda - 2) \begin{vmatrix} \lambda & 0 \\ 2 & \lambda - 2 \end{vmatrix} = \lambda^2 (\lambda - 2)^2.$$
(12)

Hence, we deduce that A has two double eigenvalues $\lambda_1 = 0$, $\lambda_2 = 2$ and the corresponding eigenvectors are $\xi = (-1, -1, -1, -1)^T$, $\eta_1 = (0, -1, -1, -1)^T$, $\eta_2 = (3, 1, 1, 4)^T$. $\begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix}$

Hence the Jordan form of A is
$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} = D$$
. Since $dim(ker(A - \lambda_1 I)) = 1$,

$$dim(ker(A - \lambda_1 I)^2) = 2, \text{ we want to find } \beta \text{ such that } \beta \in ker(A - \lambda_1 I)^2/ker(A - \lambda_1 I).$$

We calculate that $A^2 = \begin{pmatrix} 0 & -8 & 4 & 4 \\ -4 & 0 & 0 & 4 \\ -4 & -8 & 4 & 8 \end{pmatrix}$, so we can choose $\beta = (1, 2, 3, 1)^T$. By far, we deduce that $T = \begin{pmatrix} -1 & 1 & 0 & 3 \\ -1 & 2 & -1 & 1 \\ -1 & 3 & -1 & 1 \\ -1 & 1 & -1 & 4 \end{pmatrix}$, where $T^{-1}AT = D$.

2. Since the Jordan form of A is D, and $exp(Dt) = \begin{pmatrix} 1 & t & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{2t} & 0 \\ 0 & 0 & 0 & e^{2t} \end{pmatrix}$. We get that the

fundamental matrix $\varphi(t) = Te^{Dt}$. Hence the general solution is

$$x = c_1 \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{pmatrix} + c_2 t \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix} + c_3 e^{2t} \begin{pmatrix} 0 \\ -1 \\ -1 \\ -1 \\ -1 \end{pmatrix} + c_4 e^{2t} \begin{pmatrix} 3 \\ 1 \\ 1 \\ 4 \end{pmatrix}$$
(13)

REMARK: In this problem, since we have three eigenvectors, we immediately have three solutions: $x_1 = \xi$, $x_3 = \eta_1 e^{2t}$, $x_4 = \eta_2 e^{2t}$. For another solution (I have already told in the tutorial), we can assume it having the form $x_2 = \xi t + \beta$, where β satisfies $(A - \lambda_1 I)\beta = \xi$.

Question 5:

1. It's sufficient to check that $x_1 = (3t^4, -t^4)^T$, $x_2 = (t^2, -t^2)^T$ are the solutions of that system(Obviously they are linearly independent). We calculate that

$$P(t)x_{1} = \begin{pmatrix} 12t^{3} \\ -4t^{3} \end{pmatrix} = x_{1}^{'},$$
(14)

$$P(t)x_{2} = \begin{pmatrix} 2t \\ -2t \end{pmatrix} = x_{2}^{'}.$$
(15)

These complete our proof.

2. Since the fundamental matrix of homogeneous system is $\varphi(t)$, we assume the solution to the O.D.E is $x = u(t)\varphi(t)$, where $u = (u_1, u_2)^T$. The variation of parameters tells us u satisfies

$$\begin{pmatrix} 3t^4 & t^2 \\ -t^4 & -t^2 \end{pmatrix} \begin{pmatrix} u'_1 \\ u'_2 \end{pmatrix} = \begin{pmatrix} 4t^4 \\ 0 \end{pmatrix},$$
(16)

i.e.

$$\begin{cases} 3t^{4}u'_{1} + t^{2}u'_{2} = 4t^{4} \\ -t^{4}u'_{1} - t^{2}u'_{2} = 0 \end{cases}$$
(17)

We solve (17) and deduce that $u_1 = 2t + C_1$, $u_2 = -\frac{2}{3}t^3 + C_2$. Therefore, the general solution of that O.D.E is

$$x = C_1 t^4 \begin{pmatrix} 3 \\ -1 \end{pmatrix} + C_2 t^2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} + t^5 \begin{pmatrix} \frac{16}{3} \\ -\frac{4}{3} \end{pmatrix}.$$
 (18)

Question 6: This problem is a simple use of Abel's formula. In tutorial, I already showed that for the n-th order linear equation:

$$y^{(n)} + p_{n-1}(t)y^{(n-1)} + \dots + p_1(t)y' + p_0y = 0,$$
(19)

we have $W(y_1, ..., y_n) = Ce^{\int -p_{n-1}(t)dt}$, where $y_1, ..., y_n$ are the solutions of (19). For the system x' = Ax, we have similar result. If $\varphi_1, ..., \varphi_n$ are solutions of that systems, we have $\hat{W}(\varphi_1, ..., \varphi_n) = C'e^{\int tr(A)dt}$, where tr(A) means the trace of A. In this problem, since the tr(A) = -p(t) and $y_1, y_2, y_3, \varphi_1, \varphi_2, \varphi_3$ are fundamental sets, we deduce that

$$W(y_1, ..., y_3) = C_1 e^{\int -p(t)dt} \hat{W}(\varphi_1, ..., \varphi_3) = C_2 e^{\int -p(t)dt}$$
(20)

where C_1 , C_2 are non-zero constants. This completes the proof.