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Question 1:

1. It’s a separable equation. We deduce that (3y2 − 6)y
′

= 3t2, integral on both sides and use
the initial data, we deduce the solution is

y3 − 6y = t − 1

.

2. By the hint, we want to find an integrating factor having the form u = u(xy). From

the pro 5 in homework1, we can choose u = e
∫

R, where R =
Nx − My

xM − yN
, which only

depends on xy. In this equation, we find that Nx = 1 + 4xy, My = 3 + 4xy, and then

R =
Nx − My

xM − yN
= −

1
xy

(only depends on xy). Hence, u =
1
xy

. We multiply u on the both

sides and get an exact equation (
3
x

+ 2y)dx + (
1
y

+ 2x)dy = 0. Therefore, using the initial

data, the solution of that O.D.E is

ln |y| + 2xy + 3 ln |x| = 2.

3. The characteristic equation of the homogeneous equation is 4r2 − 4r + 1 = (2r − 1)2 = 0.
Hence, the general solution to the homogeneous equation is y = (c1 + c2t)et/2. Since the
R.H.S of inhomogeneous equation is 8et/2, we assume the particular solution having the

form y∗ = At2et/2. Then, (y∗)
′

= (
At2

2
+2At)et/2, (y∗)

′′

= (
At2

4
+2At+2A)et/2, we substitute

these to the equation and deduce that A = 1. Hence, the solution to the O.D.E is

y = (c1 + c2t)et/2 + t2et/2.

Question 2:

1. We consider the general case. Suppose the equation p2y
′′

+ p1y
′

+ p0y = 0 has a solution
ϕ1, we assume another linearly independent solution is y = v(t)ϕ1 and calculate each
derivative of y:

y
′

= v
′

ϕ1 + ϕ
′

1v,

y
′′

= v
′′

ϕ1 + 2v
′

ϕ
′

1 + vϕ
′′

1 .
(1)

1In the marking of midterm, we will give 50%-80% marks if your result is wrong but the process is right.
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We substitute above to the general equation, using the fact that ϕ1 is a solution, and we
will get v satisfies

p2ϕ1v
′′

+ (2p2ϕ
′

1 + p1ϕ1)v
′

= 0. (2)

In this problem, ϕ1 = et, p2 = sin t, p1 = −(sin t + cos t), we substitute these to (2) and get
that v satisfies

sin tv
′′

+ (sin t − cos t)v
′

= 0. (3)

Let w = v
′

and we deduce that w =
sin t
et , hence, v(t) = −e−t sin t + cos t

2
. Now we

deduce another solution is y2 = −
sin t + cos t

2
, so the general solution to the O.D.E is

y = c1et + c2
sin t + cos t

2
.

2. We also consider the general case. Suppose the equation p3y(3) + p2y
′′

+ p1y
′

+ p0y = 0 has
a solution ϕ1, we assume another linearly independent solution is y = v(t)ϕ1 and calculate
each derivative of y:

y
′

= v
′

ϕ1 + ϕ
′

1v,

y
′′

= v
′′

ϕ1 + 2v
′

ϕ
′

1 + vϕ
′′

1 ,

y(3) = v
′′′

ϕ1 + 3v
′′

ϕ
′

1 + 3v
′

ϕ
′′

1 + vϕ
′′′

1 .

(4)

We substitute above to the general equation, using the fact that ϕ1 is a solution, and we
will get v satisfies

p3ϕ1v
′′′

+ (3p3ϕ
′

1 + p2ϕ1)v
′′

+ (3p3ϕ
′′

1 + 2p2ϕ
′

1 + p1ϕ1)v
′

= 0. (5)

In this problem, p3 = t2 − 2t + 2, p2 = −t2, p1 = 2t and we choose ϕ1 = et. Similarly, we
get that v satisfies

(t2 − 2t + 2)v
′′′

+ (2t2 − 6t + 6)v
′′

+ (t2 − 4t + 6)v
′

= 0. (6)

By far we can’t solve this equation, but since ϕ2 = t is solution to the O.D.E, which means
v1 = te−t is a particular solution to (6). Hence, we use the reduction of order again. Let
w = v

′

and assume w = uv
′

1 is another solution to the following equation:

(t2 − 2t + 2)w
′′

+ (2t2 − 6t + 6)w
′

+ (t2 − 4t + 6)w = 0. (7)

Use the formula in 3.1, we deduce that u satisfies:

t(t2 − 2t + 2)u
′′

= 0. (8)

Then, u = C1 + C2t, which means v = C1te−t + C2(t2 + t − 1)e−t. Hence, another linearly
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independent solution to the O.D.E is ϕ3 = t2, which means the general solution is y =

c1t + c2t2 + c3et.

REMARK: In this problem, we can also choose ϕ1 = t, this leads to the equation of v
changing to

t(t2 − 2t + 2)v
′′′

+ (−t3 + 3t2 − 6t + 6)v
′′

= 0. (9)

Actually, (9) is a first order separable equation, but solving this equation is not easy. We

let w = v
′′

and use partial fraction to find that w = et (t − 1)2 + 1
t3 , then integral twice to

deduce the same result.(The calculation is not easy and you can have a try by yourself.)

Question 3:

1. For this question, we add the condition that THE WRONSKIAN OF ϕ1, ϕ2...ϕn IS
NONZERO. We consider the following system of linear equations:

ϕ(n−1)
1 pn−1(t) + ... + ϕ

′

1 p1(t) + ϕ1 p0(t) = −ϕ(n)
1 (t)

ϕ(n−1)
2 pn−1(t) + ... + ϕ

′

2 p1(t) + ϕ2 p0(t) = −ϕ(n)
2 (t)

......

ϕ(n−1)
n pn−1(t) + ... + ϕ

′

n p1(t) + ϕn p0(t) = −ϕ(n)
n (t)

(10)

We write the (10) in the vector form: Ap = b, where A =


ϕ1 ϕ

′

1 · · · ϕ(n−1)
1

ϕ2 ϕ
′

2 · · · ϕ(n−1)
2

· · ·

ϕn ϕ
′

n · · · ϕ(n−1)
n

 ,
p = (p0, p1, ..., pn−1)T , b = (−ϕ(n)

1 ,−ϕ(n)
2 , ...,−ϕ(n)

n )T . Now since A = W(ϕ1, ϕ2, ..., ϕn)T ,
which implies det(A) = det(W) , 0. Hence, the system (10) is solvable, we can apply

the Cramer’s rule to solve these pi. The Cramer’s rule tells us pi =
det(Wi)
det(W)

, where Wi

is the matrix formed by replacing the i-th column of A by the column vector b. The
remaining thing is that to show these coefficients are continuous. Since each ϕi is n-times
continuous differentiable functions, and the determinant of n2 elements is a polynomial of
these elements, we deduce that Wi and W are continuous functions, which implies these
pi are continuous.
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2. From 3.1, we have the formula pi =
det(Wi)
det(W)

. In this question, we have:

W(et, sin t) =

∣∣∣∣∣∣∣ et sin t
et cos t

∣∣∣∣∣∣∣ = et(cos t − sin t),

W0 =

∣∣∣∣∣∣∣ et cos t
−et sin t

∣∣∣∣∣∣∣ = et(sin t + cos t),

W1 =

∣∣∣∣∣∣∣ et sin t
−et sin t

∣∣∣∣∣∣∣ = 2et sin t.

(11)

Hence we deduce that p0 = −
sin t + cos t
cos t − sin t

, p1 =
2 sin t

cos t − sin t
, the equation is y

′′

+ p1y
′

+

p0y = 0.
REMARK: In this problem, note that pn−1 can also be solved by Abel’s formula.

Question 4:

1. Since:

|λI − A| =

∣∣∣∣∣∣∣∣∣∣∣∣∣
λ 3 −1 −2
2 λ − 1 1 −2
2 −1 λ + 1 −2
2 3 −1 λ − 4

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣
λ 3 −1 −2
2 λ − 1 1 −2
0 0 λ 0
0 2 − λ −2 λ − 2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= λ

∣∣∣∣∣∣∣∣∣∣
λ 2 −2
2 λ −2
0 2 − λ λ − 2

∣∣∣∣∣∣∣∣∣∣
= λ(λ − 2)

∣∣∣∣∣∣∣ λ 0
2 λ − 2

∣∣∣∣∣∣∣ = λ2(λ − 2)2.

(12)

Hence, we deduce that A has two double eigenvalues λ1 = 0, λ2 = 2 and the corre-
sponding eigenvectors are ξ = (−1,−1,−1,−1)T , η1 = (0,−1,−1,−1)T , η2 = (3, 1, 1, 4)T .

Hence the Jordan form of A is


0 1 0 0
0 0 0 0
0 0 2 0
0 0 0 2

 = D. Since dim(ker(A − λ1I)) = 1,

dim(ker(A − λ1I)2) = 2, we want to find β such that β ∈ ker(A − λ1I)2/ker(A − λ1I).

We calculate that A2 =


0 −8 4 4
−4 0 0 4
−4 0 0 4
−4 −8 4 8

 , so we can choose β = (1, 2, 3, 1)T . By far, we

deduce that T =


−1 1 0 3
−1 2 −1 1
−1 3 −1 1
−1 1 −1 4

 , where T−1AT = D.
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2. Since the Jordan form of A is D, and exp(Dt) =


1 t 0 0
0 1 0 0
0 0 e2t 0
0 0 0 e2t

 . We get that the

fundamental matrix ϕ(t) = TeDt. Hence the general solution is

x = c1


−1
−1
−1
−1

 + c2t


1
2
3
1

 + c3e2t


0
−1
−1
−1

 + c4e2t


3
1
1
4

 (13)

REMARK: In this problem, since we have three eigenvectors, we immediately have three
solutions: x1 = ξ, x3 = η1e2t, x4 = η2e2t. For another solution (I have already told in the
tutorial), we can assume it having the form x2 = ξt + β, where β satisfies (A − λ1I)β = ξ.

Question 5:

1. It’s sufficient to check that x1 = (3t4,−t4)T , x2 = (t2,−t2)T are the solutions of that sys-
tem(Obviously they are linearly independent). We calculate that

P(t)x1 =

 12t3

−4t3

 = x
′

1, (14)

P(t)x2 =

 2t
−2t

 = x
′

2. (15)

These complete our proof.

2. Since the fundamental matrix of homogeneous system is ϕ(t), we assume the solution
to the O.D.E is x = u(t)ϕ(t), where u = (u1, u2)T . The variation of parameters tells us u
satisfies  3t4 t2

−t4 −t2

  u
′

1

u
′

2

 =

 4t4

0

 , (16)

i.e.  3t4u
′

1 + t2u
′

2 = 4t4

−t4u
′

1 − t2u
′

2 = 0
(17)

We solve (17) and deduce that u1 = 2t + C1, u2 = −
2
3

t3 + C2. Therefore, the general
solution of that O.D.E is

x = C1t4

 3
−1

 + C2t2

 1
−1

 + t5


16
3
−

4
3

 . (18)
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Question 6: This problem is a simple use of Abel’s formula. In tutorial, I already showed
that for the n-th order linear equation:

y(n) + pn−1(t)y(n−1) + ... + p1(t)y
′

+ p0y = 0, (19)

we have W(y1, ...yn) = Ce
∫
−pn−1(t)dt, where y1, ...yn are the solutions of (19). For the system

x
′

= Ax, we have similar result. If ϕ1, ...ϕn are solutions of that systems, we have Ŵ(ϕ1, ..., ϕn) =

C
′

e
∫

tr(A)dt, where tr(A) means the trace of A. In this problem, since the tr(A) = −p(t) and
y1, y2, y3, ϕ1, ϕ2, ϕ3 are fundamental sets, we deduce that

W(y1, ..., y3) = C1e
∫
−p(t)dt

Ŵ(ϕ1, ..., ϕ3) = C2e
∫
−p(t)dt

(20)

where C1, C2 are non-zero constants. This completes the proof.


