THE CHINESE UNIVERSITY OF HONG KONG
 MATH3270B
 MIDTERM SOLUTION

Zhendong CHEN ${ }^{1}$

Question 1:

1. It's a separable equation. We deduce that $\left(3 y^{2}-6\right) y^{\prime}=3 t^{2}$, integral on both sides and use the initial data, we deduce the solution is

$$
y^{3}-6 y=t-1
$$

2. By the hint, we want to find an integrating factor having the form $u=u(x y)$. From the pro 5 in homework1, we can choose $u=e^{\int R}$, where $R=\frac{N_{x}-M_{y}}{x M-y N}$, which only depends on $x y$. In this equation, we find that $N_{x}=1+4 x y, M_{y}=3+4 x y$, and then $R=\frac{N_{x}-M_{y}}{x M-y N}=-\frac{1}{x y}$ (only depends on $x y$). Hence, $u=\frac{1}{x y}$. We multiply u on the both sides and get an exact equation $\left(\frac{3}{x}+2 y\right) d x+\left(\frac{1}{y}+2 x\right) d y=0$. Therefore, using the initial data, the solution of that O.D.E is

$$
\ln |y|+2 x y+3 \ln |x|=2 .
$$

3. The characteristic equation of the homogeneous equation is $4 r^{2}-4 r+1=(2 r-1)^{2}=0$. Hence, the general solution to the homogeneous equation is $y=\left(c_{1}+c_{2} t\right) e^{t / 2}$. Since the R.H.S of inhomogeneous equation is $8 e^{t / 2}$, we assume the particular solution having the form $y^{*}=A t^{2} e^{t / 2}$. Then, $\left(y^{*}\right)^{\prime}=\left(\frac{A t^{2}}{2}+2 A t\right) e^{t / 2},\left(y^{*}\right)^{\prime \prime}=\left(\frac{A t^{2}}{4}+2 A t+2 A\right) e^{t / 2}$, we substitute these to the equation and deduce that $A=1$. Hence, the solution to the O.D.E is

$$
y=\left(c_{1}+c_{2} t\right) e^{t / 2}+t^{2} e^{t / 2}
$$

Question 2:

1. We consider the general case. Suppose the equation $p_{2} y^{\prime \prime}+p_{1} y^{\prime}+p_{0} y=0$ has a solution φ_{1}, we assume another linearly independent solution is $y=v(t) \varphi_{1}$ and calculate each derivative of y :

$$
\begin{align*}
& y^{\prime}=v^{\prime} \varphi_{1}+\varphi_{1}^{\prime} v, \\
& y^{\prime \prime}=v^{\prime \prime} \varphi_{1}+2 v^{\prime} \varphi_{1}^{\prime}+v \varphi_{1}^{\prime \prime} . \tag{1}
\end{align*}
$$

[^0]We substitute above to the general equation, using the fact that φ_{1} is a solution, and we will get v satisfies

$$
\begin{equation*}
p_{2} \varphi_{1} v^{\prime \prime}+\left(2 p_{2} \varphi_{1}^{\prime}+p_{1} \varphi_{1}\right) v^{\prime}=0 \tag{2}
\end{equation*}
$$

In this problem, $\varphi_{1}=e^{t}, p_{2}=\sin t, p_{1}=-(\sin t+\cos t)$, we substitute these to (2) and get that v satisfies

$$
\begin{equation*}
\sin t v^{\prime \prime}+(\sin t-\cos t) v^{\prime}=0 \tag{3}
\end{equation*}
$$

Let $w=v^{\prime}$ and we deduce that $w=\frac{\sin t}{e^{t}}$, hence, $v(t)=-e^{-t} \frac{\sin t+\cos t}{2}$. Now we deduce another solution is $y_{2}=-\frac{\sin t+\cos t}{2}$, so the general solution to the O.D.E is $y=c_{1} e^{t}+c_{2} \frac{\sin t+\cos t}{2}$.
2. We also consider the general case. Suppose the equation $p_{3} y^{(3)}+p_{2} y^{\prime \prime}+p_{1} y^{\prime}+p_{0} y=0$ has a solution φ_{1}, we assume another linearly independent solution is $y=v(t) \varphi_{1}$ and calculate each derivative of y :

$$
\begin{align*}
& y^{\prime}=v^{\prime} \varphi_{1}+\varphi_{1}^{\prime} v, \\
& y^{\prime \prime}=v^{\prime \prime} \varphi_{1}+2 v^{\prime} \varphi_{1}^{\prime}+v \varphi_{1}^{\prime \prime} \tag{4}\\
& y^{(3)}=v^{\prime \prime \prime} \varphi_{1}+3 v^{\prime \prime} \varphi_{1}^{\prime}+3 v^{\prime} \varphi_{1}^{\prime \prime}+v \varphi_{1}^{\prime \prime \prime}
\end{align*}
$$

We substitute above to the general equation, using the fact that φ_{1} is a solution, and we will get v satisfies

$$
\begin{equation*}
p_{3} \varphi_{1} v^{\prime \prime \prime}+\left(3 p_{3} \varphi_{1}^{\prime}+p_{2} \varphi_{1}\right) v^{\prime \prime}+\left(3 p_{3} \varphi_{1}^{\prime \prime}+2 p_{2} \varphi_{1}^{\prime}+p_{1} \varphi_{1}\right) v^{\prime}=0 \tag{5}
\end{equation*}
$$

In this problem, $p_{3}=t^{2}-2 t+2, p_{2}=-t^{2}, p_{1}=2 t$ and we choose $\varphi_{1}=e^{t}$. Similarly, we get that v satisfies

$$
\begin{equation*}
\left(t^{2}-2 t+2\right) v^{\prime \prime \prime}+\left(2 t^{2}-6 t+6\right) v^{\prime \prime}+\left(t^{2}-4 t+6\right) v^{\prime}=0 \tag{6}
\end{equation*}
$$

By far we can't solve this equation, but since $\varphi_{2}=t$ is solution to the O.D.E, which means $v_{1}=t e^{-t}$ is a particular solution to (6). Hence, we use the reduction of order again. Let $w=v^{\prime}$ and assume $w=u v_{1}^{\prime}$ is another solution to the following equation:

$$
\begin{equation*}
\left(t^{2}-2 t+2\right) w^{\prime \prime}+\left(2 t^{2}-6 t+6\right) w^{\prime}+\left(t^{2}-4 t+6\right) w=0 \tag{7}
\end{equation*}
$$

Use the formula in 3.1, we deduce that u satisfies:

$$
\begin{equation*}
t\left(t^{2}-2 t+2\right) u^{\prime \prime}=0 \tag{8}
\end{equation*}
$$

Then, $u=C_{1}+C_{2} t$, which means $v=C_{1} t e^{-t}+C_{2}\left(t^{2}+t-1\right) e^{-t}$. Hence, another linearly
independent solution to the O.D.E is $\varphi_{3}=t^{2}$, which means the general solution is $y=$ $c_{1} t+c_{2} t^{2}+c_{3} e^{t}$.
REMARK: In this problem, we can also choose $\varphi_{1}=t$, this leads to the equation of v changing to

$$
\begin{equation*}
t\left(t^{2}-2 t+2\right) v^{\prime \prime \prime}+\left(-t^{3}+3 t^{2}-6 t+6\right) v^{\prime \prime}=0 \tag{9}
\end{equation*}
$$

Actually, (9) is a first order separable equation, but solving this equation is not easy. We let $w=v^{\prime \prime}$ and use partial fraction to find that $w=e^{t} \frac{(t-1)^{2}+1}{t^{3}}$, then integral twice to deduce the same result.(The calculation is not easy and you can have a try by yourself.)

Question 3:

1. For this question, we add the condition that THE WRONSKIAN OF $\varphi_{1}, \varphi_{2} \ldots \varphi_{\mathbf{n}}$ IS NONZERO. We consider the following system of linear equations:

$$
\left\{\begin{array}{l}
\varphi_{1}^{(n-1)} p_{n-1}(t)+\ldots+\varphi_{1}^{\prime} p_{1}(t)+\varphi_{1} p_{0}(t)=-\varphi_{1}^{(n)}(t) \tag{10}\\
\varphi_{2}^{(n-1)} p_{n-1}(t)+\ldots+\varphi_{2}^{\prime} p_{1}(t)+\varphi_{2} p_{0}(t)=-\varphi_{2}^{(n)}(t) \\
\ldots \ldots \\
\varphi_{n}^{(n-1)} p_{n-1}(t)+\ldots+\varphi_{n}^{\prime} p_{1}(t)+\varphi_{n} p_{0}(t)=-\varphi_{n}^{(n)}(t)
\end{array}\right.
$$

We write the (10) in the vector form: $A p=b$, where $A=\left(\begin{array}{cccc}\varphi_{1} & \varphi_{1}^{\prime} & \cdots & \varphi_{1}^{(n-1)} \\ \varphi_{2} & \varphi_{2}^{\prime} & \cdots & \varphi_{2}^{(n-1)} \\ \cdots & & & \\ \varphi_{n} & \varphi_{n}^{\prime} & \cdots & \varphi_{n}^{(n-1)}\end{array}\right)$, $p=\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)^{T}, b=\left(-\varphi_{1}^{(n)},-\varphi_{2}^{(n)}, \ldots,-\varphi_{n}^{(n)}\right)^{T}$. Now since $A=W\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right)^{T}$, which implies $\operatorname{det}(A)=\operatorname{det}(W) \neq 0$. Hence, the system (10) is solvable, we can apply the Cramer's rule to solve these p_{i}. The Cramer's rule tells us $p_{i}=\frac{\operatorname{det}\left(W_{i}\right)}{\operatorname{det}(W)}$, where W_{i} is the matrix formed by replacing the i -th column of A by the column vector b . The remaining thing is that to show these coefficients are continuous. Since each φ_{i} is n-times continuous differentiable functions, and the determinant of n^{2} elements is a polynomial of these elements, we deduce that W_{i} and W are continuous functions, which implies these p_{i} are continuous.
2. From 3.1, we have the formula $p_{i}=\frac{\operatorname{det}\left(W_{i}\right)}{\operatorname{det}(W)}$. In this question, we have:

$$
\begin{align*}
& W\left(e^{t}, \sin t\right)=\left|\begin{array}{cc}
e^{t} & \sin t \\
e^{t} & \cos t
\end{array}\right|=e^{t}(\cos t-\sin t), \\
& W_{0}=\left|\begin{array}{cc}
e^{t} & \cos t \\
-e^{t} & \sin t
\end{array}\right|=e^{t}(\sin t+\cos t), \tag{11}\\
& W_{1}=\left|\begin{array}{cc}
e^{t} & \sin t \\
-e^{t} & \sin t
\end{array}\right|=2 e^{t} \sin t .
\end{align*}
$$

Hence we deduce that $p_{0}=-\frac{\sin t+\cos t}{\cos t-\sin t}, p_{1}=\frac{2 \sin t}{\cos t-\sin t}$, the equation is $y^{\prime \prime}+p_{1} y^{\prime}+$ $p_{0} y=0$.
REMARK: In this problem, note that p_{n-1} can also be solved by Abel's formula.

Question 4:

1. Since:

$$
\begin{align*}
& |\lambda I-A|=\left|\begin{array}{cccc}
\lambda & 3 & -1 & -2 \\
2 & \lambda-1 & 1 & -2 \\
2 & -1 & \lambda+1 & -2 \\
2 & 3 & -1 & \lambda-4
\end{array}\right|=\left|\begin{array}{cccc}
\lambda & 3 & -1 & -2 \\
2 & \lambda-1 & 1 & -2 \\
0 & 0 & \lambda & 0 \\
0 & 2-\lambda & -2 & \lambda-2
\end{array}\right|=\lambda\left|\begin{array}{ccc}
\lambda & 2 & -2 \\
2 & \lambda & -2 \\
0 & 2-\lambda & \lambda-2
\end{array}\right| \\
& =\lambda(\lambda-2)\left|\begin{array}{cc}
\lambda & 0 \\
2 & \lambda-2
\end{array}\right|=\lambda^{2}(\lambda-2)^{2} . \tag{12}
\end{align*}
$$

Hence, we deduce that A has two double eigenvalues $\lambda_{1}=0, \lambda_{2}=2$ and the corresponding eigenvectors are $\xi=(-1,-1,-1,-1)^{T}, \eta_{1}=(0,-1,-1,-1)^{T}, \eta_{2}=(3,1,1,4)^{T}$. Hence the Jordan form of A is $\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)=D$. Since $\operatorname{dim}\left(\operatorname{ker}\left(A-\lambda_{1} I\right)\right)=1$, $\operatorname{dim}\left(\operatorname{ker}\left(A-\lambda_{1} I\right)^{2}\right)=2$, we want to find β such that $\beta \in \operatorname{ker}\left(A-\lambda_{1} I\right)^{2} / \operatorname{ker}\left(A-\lambda_{1} I\right)$. We calculate that $A^{2}=\left(\begin{array}{cccc}0 & -8 & 4 & 4 \\ -4 & 0 & 0 & 4 \\ -4 & 0 & 0 & 4 \\ -4 & -8 & 4 & 8\end{array}\right)$, so we can choose $\beta=(1,2,3,1)^{T}$. By far, we deduce that $T=\left(\begin{array}{cccc}-1 & 1 & 0 & 3 \\ -1 & 2 & -1 & 1 \\ -1 & 3 & -1 & 1 \\ -1 & 1 & -1 & 4\end{array}\right)$, where $T^{-1} A T=D$.
2. Since the Jordan form of A is D , and $\exp (D t)=\left(\begin{array}{cccc}1 & t & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{2 t} & 0 \\ 0 & 0 & 0 & e^{2 t}\end{array}\right)$. We get that the fundamental matrix $\varphi(t)=T e^{D t}$. Hence the general solution is

$$
x=c_{1}\left(\begin{array}{l}
-1 \tag{13}\\
-1 \\
-1 \\
-1
\end{array}\right)+c_{2} t\left(\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right)+c_{3} e^{2 t}\left(\begin{array}{c}
0 \\
-1 \\
-1 \\
-1
\end{array}\right)+c_{4} e^{2 t}\left(\begin{array}{l}
3 \\
1 \\
1 \\
4
\end{array}\right)
$$

REMARK: In this problem, since we have three eigenvectors, we immediately have three solutions: $x_{1}=\xi, x_{3}=\eta_{1} e^{2 t}, x_{4}=\eta_{2} e^{2 t}$. For another solution (I have already told in the tutorial), we can assume it having the form $x_{2}=\xi t+\beta$, where β satisfies $\left(A-\lambda_{1} I\right) \beta=\xi$.

Question 5:

1. It's sufficient to check that $x_{1}=\left(3 t^{4},-t^{4}\right)^{T}, x_{2}=\left(t^{2},-t^{2}\right)^{T}$ are the solutions of that system(Obviously they are linearly independent). We calculate that

$$
\begin{align*}
& P(t) x_{1}=\binom{12 t^{3}}{-4 t^{3}}=x_{1}^{\prime}, \tag{14}\\
& P(t) x_{2}=\binom{2 t}{-2 t}=x_{2}^{\prime} . \tag{15}
\end{align*}
$$

These complete our proof.
2. Since the fundamental matrix of homogeneous system is $\varphi(t)$, we assume the solution to the O.D.E is $x=u(t) \varphi(t)$, where $u=\left(u_{1}, u_{2}\right)^{T}$. The variation of parameters tells us u satisfies

$$
\left(\begin{array}{cc}
3 t^{4} & t^{2} \tag{16}\\
-t^{4} & -t^{2}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{4 t^{4}}{0},
$$

i.e.

$$
\left\{\begin{array}{c}
3 t^{4} u_{1}^{\prime}+t^{2} u_{2}^{\prime}=4 t^{4} \tag{17}\\
-t^{4} u_{1}^{\prime}-t^{2} u_{2}^{\prime}=0
\end{array}\right.
$$

We solve (17) and deduce that $u_{1}=2 t+C_{1}, u_{2}=-\frac{2}{3} t^{3}+C_{2}$. Therefore, the general solution of that O.D.E is

$$
\begin{equation*}
x=C_{1} t^{4}\binom{3}{-1}+C_{2} t^{2}\binom{1}{-1}+t^{5}\binom{\frac{16}{3}}{-\frac{4}{3}} . \tag{18}
\end{equation*}
$$

Question 6: This problem is a simple use of Abel's formula. In tutorial, I already showed that for the n -th order linear equation:

$$
\begin{equation*}
y^{(n)}+p_{n-1}(t) y^{(n-1)}+\ldots+p_{1}(t) y^{\prime}+p_{0} y=0 \tag{19}
\end{equation*}
$$

we have $W\left(y_{1}, \ldots y_{n}\right)=C e^{\int-p_{n-1}(t) d t}$, where $y_{1}, \ldots y_{n}$ are the solutions of (19). For the system $x^{\prime}=A x$, we have similar result. If $\varphi_{1}, \ldots \varphi_{n}$ are solutions of that systems, we have $\hat{W}\left(\varphi_{1}, \ldots, \varphi_{n}\right)=$ $C^{\prime} e^{\int \operatorname{tr}(A) d t}$, where $\operatorname{tr}(A)$ means the trace of A. In this problem, since the $\operatorname{tr}(A)=-p(t)$ and $y_{1}, y_{2}, y_{3}, \varphi_{1}, \varphi_{2}, \varphi_{3}$ are fundamental sets, we deduce that

$$
\begin{align*}
& W\left(y_{1}, \ldots, y_{3}\right)=C_{1} e^{\int-p(t) d t} \\
& \hat{W}\left(\varphi_{1}, \ldots, \varphi_{3}\right)=C_{2} e^{\int-p(t) d t} \tag{20}
\end{align*}
$$

where C_{1}, C_{2} are non-zero constants. This completes the proof.

[^0]: ${ }^{1}$ In the marking of midterm, we will give $50 \%-80 \%$ marks if your result is wrong but the process is right.

